Incremental
Dependency Parsing

Michael Fell
9 June 2011

55 A Computational
UNIVERSITAT Linguistics

SAARLANDES = Phonetics

Overview

- Incremental Dependency Parsing
- two algorithms
- evaluation

- General criticism on present approaches

- possible improvements

- Summary

Dependency Parsing

The man loves cake. (Sentence)

!

Subj Obj

Det
The Man |OV€S Cda ke (Dependency Graph)

Dependency Graph

Labeled, directed graph (W, A)

- W: words in the sentence
- A: dependency relation between words

Dependency Graph

Labeled, directed graph (W, A)

W: words in the sentence

A: dependency relation between words

Well-formedness criteria:

connected
acyclic
unique label
single head
projective

Incremental Dependency Parsing

Dependency parsing
- is robust and performs well
- omits phrasal nodes

—2>What about doing it incrementally?

Incremental Dependency Parsing

Dependency parsing
- is robust and performs well
- omits phrasal nodes

—2>What about doing it incrementally?

—->0ne possibility:
Left-to-right bottom-up dependency parsing

Bottom-up Dependency Parsing

stack input dep. graph

Bottom-up Dependency Parsing

input dep. graph

Shift: El b G
(S) [|
El bc G

Bottom-up Dependency Parsing

input

Shift: El b G
(S) [|
El bc G

Left-Reduce (LR):

b
a C G
S|

l £
b C Guab
S|

Bottom-up Dependency Parsing

Right-Reduce (RR):

stack input dep. graph

Shift: El b G g . G
(S) [| s (]
El bc G a C Gu
s

Left-Reduce (LR):

b
a C G
S|

l £
b C Guab
S|

-J

Bottom-up Dependency Parsing

Example derivation of £

U abc %)

Bottom-up Dependency Parsing

Example derivation of £

|| abc %)
(1) Is
El bc %,

Bottom-up Dependency Parsing

Example derivation of £

|| abc %,

(1) Is
El bc %)

(2) o Is
al C %)

Bottom-up Dependency Parsing

Example derivation of £

|| abc %)
(1) Is

El bc %)
(2) o Is

al C %)
(3) LR

b c &

Bottom-up Dependency Parsing

Example derivation of £

|| abc J
(1) Is

a bc %,
(2) N Is

El C %,
(3) LR

b c &
(4) . Is

b : &

Bottom-up dependency parsing

Example derivation of £

|| abc %)
(1) Is

El bc %)
(2) o Is

al C %)
(3) LR

b c &
(4) . Is

b - &
(5) IRR

C| - a| bI c|

Bottom-up dependency parsing

Dependency graphs with 3 nodes:

ol Yl “ﬂb 1 O I A
PRI fﬂ mc[Pl

We have derived (4). (2), (3) and (5) can also be derived.

Bottom-up dependency parsing

Dependency graphs with 3 nodes:

O T R ST “_}) 1 3) [f}; 1 @ & W
PRI fﬂ mc[Pl

We have derived (4). (2), (3) and (5) can also be derived.

(1) and (6), (7) can’t be derived

Bottom-up Dependency Parsing

Dependency graphs with 3 nodes:

oL Yol @ “ﬂb 1 O I A
PRI fﬂ mc[Pl

We have derived (4). (2), (3) and (5) can also be derived.

(1) and (6), (7) can’t be derived

(1): b is combined via Right-Reduction - b has a head - b erased from stack

Bottom-up Dependency Parsing

Dependency graphs with 3 nodes:

O T R ST “_}) 1 3) [@; 1 @ & W
SR I PW mc[Pl

We have derived (4). (2), (3) and (5) can also be derived.

(1) and (6), (7) can’t be derived

(1): b is combined with a via Right-Reduction - b has a head - b erased from
stack

(6), (7): no connecting arc between a and b - To connect them, we needed to
put c onto the stack, too. (hence lose incrementality)

Bottom-up Dependency Parsing

SR Rt “_}) 1 (3) (W W @ & W
G & WL o fﬂ mc[Pl

Is there a way to parse (1) and (6), (7) incrementally?

—2(6), (7): no!

Bottom-up Dependency Parsing

oL e “_}) 1 (3) h W @ & W
G & WL o fﬂ mc[Pl

Is there a way to parse (1) and (6), (7) incrementally?

—2(6), (7): no!
—2(1): yes, read input from right to left

—incrementality?

Bottom-up Dependency Parsing

oL e “_}) 1 (3) h W @ & W
G & WL o fﬂ mc[Pl

Is there a way to parse (1) and (6), (7) incrementally?

—2(6), (7): no!
—2(1): yes, read input from right to left

—incrementality?

(1) can be processed incrementally

Incremental Dependency Parsing

Bottom-up and Top-down in Dependency Parsing

. %
BU: b xS

Dependent D is attached to its head H before H is attached to its head

Incremental Dependency Parsing

Bottom-up and Top-down in Dependency Parsing

. %
BU: b xS

Dependent D is attached to its head H before H is attached to its head

m 5 N
™ HDx "™ LD

Head H is attached to a dependent D before D is attached to its dependent(s)

Incremental Dependency Parsing

Bottom-up and Top-down in Dependency Parsing

. %
BU: b xS

Dependent D is attached to its head H before H is attached to its head

m 5 N
™ HDx "™ LD

Head H is attached to a dependent D before D is attached to its dependent(s)

Insight:
- We can process left-dependents incrementally via BU
—> process right-dependents incrementally via TD parsing

Incremental Dependency Parsing

Bottom-up and Top-down in Dependency Parsing

. %
BU: b xS

Dependent D is attached to its head H before H is attached to its head

m 5 N
™ HDx "™ LD

Head H is attached to a dependent D before D is attached to its dependent(s)

Insight:
- We can process left-dependents incrementally via BU
—> process right-dependents incrementally via TD parsing

—> Arc-Eager Dependency Parsing

Arc-Eager Dependency Parsing

input dep. graph

Shift: El b G
(S) [|
El bc G

Arc-Eager Dependency Parsing

input dep. graph

Shift: El b G
(S) [|
El bc G

Left-Arc (LA):

bc G

[o
<
=)

bc GuU a

(0

Arc-Eager Dependency Parsing

Shift: \;lk

(5)
g

Left-Arc (LA):

[h »

(0

input

abc

l

bc

bc

bc

dep. graph

G

G

)

Right-Arc (RA):

o o [

U

Arc-Eager Dependency Parsing

stack

Shift: El

(5)
g

Left-Arc (LA):

[h »

(0

input

abc

l

bc

bc

bc

dep. graph Right'ArC (RA):

G a bc
S

|
G b

a C
S

Reduce (R):
G EJ bc
~ |

Bottom-up VS. Arc-Eager

Shift: 5 abe G Shift: El Abe
(Sgu) Is (Sae) Is
g bc G El bc

Bottom-up VS. Arc-Eager

stack input

Shift: 5 abe G Shift: El Abe G
(Sgu) Is (Sae) Is
g bc G El bc G
Left-Reduce (LR): Left-Arc (LA):
a bc G
i) A
a C G bc Gu a
S LR S
l f
b C Guab
S|

Bottom-up VS. Arc-Eager

Shift: 5 abe G Shift: El Abe G
(Sgu) Is (Sae) Is
g bc G El bc G
Left-Reduce (LR): Left-Arc (LA):
a bC G a bc G
S s = JLA
2 C G bc Gu a
S LR S
l f
b C Guab
S

Shift:
(Sgu)

stac

k

(n o

Bottom-up

input

abc

Is
bc

Left-Reduce (LR):

[h o o [o

XSS

dep. graph

VS.

Shift: El

(Sa)
4

Left-Arc (LA):

N

abc

Is

bc

Arc-Eager

Bottom-up VS. Arc-Eager

Right-Reduce (RR): Right-Arc (RA):
a bc G
S
= IRrRA
b b
N C G a C Gu a
a C Gu ‘a_B
S

-

Bottom-up

Right-Reduce (RR):

a

s be G
s

;

i C G

= JRR

a C Gu

S |

VS. Arc-Eager
Right-Arc (RA):
a bc G
5 JRA
g C Gu ‘a_B

Bottom-up VS. Arc-Eager

Right-Reduce (RR): Right-Arc (RA):
bc
a a G
SR c g
LS b
2 C G a C Guab
S JRR = IR
C Gu ‘a_B a C Gu ‘a_‘
S| S|

Bottom-up VS. Arc-Eager

Right-Reduce (RR): Right-Arc (RA):
bc
a a G
SR c g
LS b
2 C G a C Gu ﬂ
= JRR > IR
C Gu ‘a_B a C Gu ‘a_B
S| S|

—>Arc-Eager Dependency Parsing can fully simulate Bottom-up
Dependency Parsing!

Bottom-up VS. Arc-Eager

Right-Reduce (RR): Right-Arc (RA):
bc
a a G
SR c g
LS b
2 C G a C Gu ‘a_B
= JRR > IR
C Gu ‘a_B a C Gu ‘a_B
S| S|

—>Arc-Eager Dependency Parsing can fully simulate Bottom-up
Dependency Parsing

- We can also derive new graphs with AE! (see next slide)

Arc-Eager Dependency Parsing

m Lo

(1) is not derivable with BU parsing, but it is with AE:

U abc %)

Arc-Eager Dependency Parsing

m Lo

(1) is not derivable with BU parsing, but it is with AE:

|| abc %)
Is
a bc %)

Arc-Eager Dependency Parsing

R
a C

(1) b

(1) is not derivable with BU parsing, but it is with AE:

|| abc %)
Is
a bc %)
b Ira -
A C ab

Arc-Eager Dependency Parsing

R
a C

(1) b

(1) is not derivable with BU parsing, but it is with AE:

|| abc %)
Is
a bc %)
b Ira o
A C ab
IRrRA
; : N
a

Arc-Eager Parsing: Evaluation

- small Swedish treebank (5685 sentences)

- evaluating incrementality: number of connected components
on stack during parse (< 1 means strictly incremental)

Arc-Eager Parsing: Evaluation

- small Swedish treebank (5685 sentences)

- evaluating incrementality: number of connected components
on stack during parse (< 1 means strictly incremental)

Connected Parser configurations

components Number Percent
0 1251 7.6
1 10148 61.3
2 2739 16.6
3 1471 8.9
4 587 3.5
5) 222 1.3
6 98 0.6
7 26 0.2
8 3 0.0
<1 11399 68.9 - strictly incremental
<3 15609 94.3
<8 16545 100.0

47

Arc-Eager Parsing: Evaluation

- small Swedish treebank (5685 sentences)

- evaluating incrementality: number of connected components
on stack during parse (< 1 means strictly incremental)

Connected Parser configurations

components Number Percent

0 1251 7.6

1 10148 61.3

2 2739 16.6

3 1471 8.9

4 587 3.5

5 222 1.3

6 98 0.6

7 26 0.2

8 3 0.0
<1 11399 63.9 | €= strictly incremental
z3 15609 94.3 | 4mmm “mildly” incremental
<38 16545 100.0

48

Intermediate Summary

- Dependency parsing works well in practice

- Incremental dependency parsing possible in many
cases
- Improving the parsing technique is essential

- Arc-Eager performs better than Bottom-up dep. parsing
- Well-formed parsing results show high incrementality

Intermediate Summary

- Dependency parsing works well in practice

- Incremental dependency parsing possible in many
cases
- Improving the parsing technique is essential

- Arc-Eager performs better than Bottom-up dep. parsing
- Well-formed parsing results show high incrementality

- ... but, what about those structures (6) and (7) we
couldn’t parse incrementally?

Robust Incrementality

PN
Das Buch , mit dem der Lehrer

The book with which the teacher

Robust Incrementality

PN
Das Buch , mit dem der Lehrer

The book with which the teacher

Drawbacks of storing components on a stack
- psycholinguistic plausibility: why not integrate directly?

Robust Incrementality

PN
Das Buch , mit dem der Lehrer

The book with which the teacher

Drawbacks of storing components on a stack
- psycholinguistic plausibility: why not integrate directly?

- practicality: delay of output as stored components are not
part of it

Robust Incrementality

SUBJ

DET PP SUBJ

PN DET
Das Buch , mit dem der Lehrer

The book with which the teacher

- Argument Dependency Model
- dependencies between a verb’s arguments
- proto roles (proto-agent, proto-patient)

- e.g.: noun(animate & nominative)
- noun(proto-agent)

- dependency rel. SUBJ governs the noun (phrase)
- unless contradictory constraints override this

Robust Incrementality

SUBJ

DET PP SUBJ

PN DET

Das Buch , mit dem der Lehrer
The book with which the teacher

NONSPEC node

connect structures to NONSPEC node while verb has
not been found

NONSPEC can change into any other node and even
divide into several nodes

May even be in the resulting graph

Robust Incrementality: Evaluation

- corpus with
- uniform sentence pattern
- verb-final sublauses

- 97.3% accurate dependency graphs, but...

Summary

Incremental Dependency Parsing is possible
and efficient

Verb-end structures pose problems to strict
incrementality

Pseudo-strict incrementality with abstract
NONSPEC node suggested

Integrates dep. relations on-the-fly

still seems a lot like a renamed stack to me
(which can be output) 2 too vague

3

Thank youl!

References

* Joakim Nivre (2004). Incrementality
in Deterministic Dependency Parsing

* Wolfgang Menzel (2009). Towards
radically incremental parsing of
natural language

