
Incremental
Dependency Parsing

Michael Fell
9 June 2011

1

Overview

- Incremental Dependency Parsing

- two algorithms

- evaluation

- General criticism on present approaches

- possible improvements

- Summary

2

Dependency Parsing

The man loves cake. (Sentence)

The man loves cake. (Dependency Graph)

3

Det Subj Obj

Dependency Graph

Labeled, directed graph (W, A)
- W: words in the sentence

- A: dependency relation between words

4

Dependency Graph

Labeled, directed graph (W, A)
- W: words in the sentence

- A: dependency relation between words

5

Well-formedness criteria:
- connected

- acyclic

- unique label

- single head

- projective

Incremental Dependency Parsing

Dependency parsing

- is robust and performs well

- omits phrasal nodes

What about doing it incrementally?

6

Incremental Dependency Parsing

Dependency parsing

- is robust and performs well

- omits phrasal nodes

What about doing it incrementally?

7

One possibility:

Left-to-right bottom-up dependency parsing

Bottom-up Dependency Parsing

8

stack input dep. graph

Bottom-up Dependency Parsing

Shift:

(S)

9

S abc G

stack input dep. graph

a

S
bc G

Bottom-up Dependency Parsing

Shift:

(S)

10

S abc G

stack input dep. graph

a

S
bc G

b

a

S

b

S

c

c

G

G  a b

Left-Reduce (LR):

Bottom-up Dependency Parsing

Shift:

(S)

11

S abc G

stack input dep. graph

a

S
bc G

b

a

S

a

S

c

c

G

Right-Reduce (RR):

G  a b

b

a

S

b

S

c

c

G

G  a b

Left-Reduce (LR):

Bottom-up Dependency Parsing

Example derivation of

12

abc 

a b c

Bottom-up Dependency Parsing

Example derivation of

13

abc 

bc a

S

a b c

(1)

Bottom-up Dependency Parsing

Example derivation of

14

abc 

bc a

S

c 
b

a

S

a b c

(1)

(2)

Bottom-up Dependency Parsing

Example derivation of

15

abc 

bc a

S

c 
b

a

S

cb

LR

a b

a b c

(1)

(2)

(3)

Bottom-up Dependency Parsing

Example derivation of

16

abc 

bc a

S

c 
b

a

S

cb

LR

a b

-
c

b

S

a b

a b c

(1)

(2)

(3)

(4)

Bottom-up dependency parsing

Example derivation of

17

abc 

bc a

S

c 
b

a

S

cb

LR

a b

-
c

b

S

a b

-c

RR

a b c

a b c

(1)

(2)

(3)

(4)

(5)

Bottom-up dependency parsing

18

Dependency graphs with 3 nodes:

We have derived (4). (2), (3) and (5) can also be derived.

Bottom-up dependency parsing

19

Dependency graphs with 3 nodes:

We have derived (4). (2), (3) and (5) can also be derived.

(1) and (6), (7) can’t be derived

Bottom-up Dependency Parsing

20

Dependency graphs with 3 nodes:

We have derived (4). (2), (3) and (5) can also be derived.

(1) and (6), (7) can’t be derived

(1): b is combined via Right-Reduction  b has a head  b erased from stack

Bottom-up Dependency Parsing

21

Dependency graphs with 3 nodes:

We have derived (4). (2), (3) and (5) can also be derived.

(1) and (6), (7) can’t be derived

(1): b is combined with a via Right-Reduction  b has a head  b erased from

stack

(6), (7): no connecting arc between a and b  To connect them, we needed to

put c onto the stack, too. (hence lose incrementality)

Bottom-up Dependency Parsing

Is there a way to parse (1) and (6), (7) incrementally?

(6), (7): no!

Bottom-up Dependency Parsing

Is there a way to parse (1) and (6), (7) incrementally?

(6), (7): no!

(1): yes, read input from right to left

incrementality?

Bottom-up Dependency Parsing

Is there a way to parse (1) and (6), (7) incrementally?

(6), (7): no!

(1): yes, read input from right to left

incrementality?

(1) can be processed incrementally

Incremental Dependency Parsing

25

Bottom-up and Top-down in Dependency Parsing

BU:

Dependent D is attached to its head H before H is attached to its head

D H x D H x
*

Incremental Dependency Parsing

26

Bottom-up and Top-down in Dependency Parsing

BU:

Dependent D is attached to its head H before H is attached to its head

TD:

Head H is attached to a dependent D before D is attached to its dependent(s)

D H x D H x
*

*
H D x H D x

Incremental Dependency Parsing

27

Bottom-up and Top-down in Dependency Parsing

BU:

Dependent D is attached to its head H before H is attached to its head

TD:

Head H is attached to a dependent D before D is attached to its dependent(s)

Insight:

We can process left-dependents incrementally via BU

 process right-dependents incrementally via TD parsing

D H x D H x
*

*
H D x H D x

Incremental Dependency Parsing

28

Bottom-up and Top-down in Dependency Parsing

BU:

Dependent D is attached to its head H before H is attached to its head

TD:

Head H is attached to a dependent D before D is attached to its dependent(s)

Insight:

We can process left-dependents incrementally via BU

 process right-dependents incrementally via TD parsing

 Arc-Eager Dependency Parsing

D H x D H x
*

*
H D x H D x

Arc-Eager Dependency Parsing

Shift:

(S)

29

S abc G

stack input dep. graph

a

S
bc G

Arc-Eager Dependency Parsing

Shift:

(S)

30

S abc G

stack input dep. graph

a

S
bc G

a

S

S

bc

bc

G

G  a b

Left-Arc (LA):

Arc-Eager Dependency Parsing

Shift:

(S)

31

S abc G

stack input dep. graph

a

S
bc G

a

S

b

a

S

bc

c

G

Right-Arc (RA):

G  a b

a

S

S

bc

bc

G

G  a b

Left-Arc (LA):

Arc-Eager Dependency Parsing

Shift:

(S)

32

S abc G

stack input dep. graph

a

S
bc G

a

S

b

a

S

bc

c

G

Right-Arc (RA):

G  a b

a

S

S

bc

bc

G

G  a b

Left-Arc (LA):

S

Reduce (R):

bc G

bc G

a

S

Bottom-up vs. Arc-Eager

33

a

S

Shift:

(SBU)
S abc G

bc G

Shift:

(SAE)
S abc G

bc G
a

S

stack input dep. graph

S S

Bottom-up vs. Arc-Eager

34

a

S

Shift:

(SBU)
S abc G

bc G

Shift:

(SAE)
S abc G

bc G
a

S

stack input dep. graph

b

a

S

b

S

c

c

G

G  a b

Left-Reduce (LR):

a

S

S

bc

bc

G

G  a b

Left-Arc (LA):

S S

LA

LR

Bottom-up vs. Arc-Eager

35

a

S

Shift:

(SBU)
S abc G

bc G

Shift:

(SAE)
S abc G

bc G
a

S

stack input dep. graph

b

a

S

b

S

c

c

G

G  a b

Left-Reduce (LR):

a

S

S

bc

bc

G

G  a b

Left-Arc (LA):

a

S
bc G

S S

LAS

LR

Bottom-up vs. Arc-Eager

36

a

S

Shift:

(SBU)
S abc G

bc G

Shift:

(SAE)
S abc G

bc G
a

S

stack input dep. graph

b

a

S

b

S

c

c

G

G  a b

Left-Reduce (LR):

a

S

S

bc

bc

G

G  a b

Left-Arc (LA):

a

S
bc G

b

S

c G  a b

S S

LA

S

S

LR

Bottom-up vs. Arc-Eager

37

a

S

bc G

Right-Arc (RA):

b

a

S
c G  a b

b

a

S

a

S

c

c

G

Right-Reduce (RR):

G  a b

RR

RA

Bottom-up vs. Arc-Eager

38

a

S

bc G

Right-Arc (RA):

b

a

S
c G  a b

b

a

S

a

S

c

c

G

Right-Reduce (RR):

G  a b

a

S
bc G

S

RR

RA

Bottom-up vs. Arc-Eager

39

a

S

bc G

Right-Arc (RA):

b

a

S
c G  a b

b

a

S

a

S

c

c

G

Right-Reduce (RR):

G  a b

a

S
bc G

S

a

S
c G  a b

RR

RA

R

Bottom-up vs. Arc-Eager

40

a

S

bc G

Right-Arc (RA):

b

a

S
c G  a b

b

a

S

a

S

c

c

G

Right-Reduce (RR):

G  a b

a

S
bc G

S

Arc-Eager Dependency Parsing can fully simulate Bottom-up

Dependency Parsing!

a

S
c G  a b

RR

RA

R

Bottom-up vs. Arc-Eager

41

a

S

bc G

Right-Arc (RA):

b

a

S
c G  a b

b

a

S

a

S

c

c

G

Right-Reduce (RR):

G  a b

a

S
bc G

S

Arc-Eager Dependency Parsing can fully simulate Bottom-up

Dependency Parsing

We can also derive new graphs with AE! (see next slide)

a

S
c G  a b

RR

RA

R

Arc-Eager Dependency Parsing

(1) is not derivable with BU parsing, but it is with AE:

42

abc 

Arc-Eager Dependency Parsing

(1) is not derivable with BU parsing, but it is with AE:

43

abc 

bc a

S

Arc-Eager Dependency Parsing

(1) is not derivable with BU parsing, but it is with AE:

44

abc 

bc a

S

c
b

a

RA

a b

Arc-Eager Dependency Parsing

(1) is not derivable with BU parsing, but it is with AE:

45

abc 

bc a

S

c
b

a

RA

-
c

b

a

RA

a b c

a b

Arc-Eager Parsing: Evaluation

- small Swedish treebank (5685 sentences)

- evaluating incrementality: number of connected components
on stack during parse ( 1 means strictly incremental)

46

Arc-Eager Parsing: Evaluation

- small Swedish treebank (5685 sentences)

- evaluating incrementality: number of connected components
on stack during parse ( 1 means strictly incremental)

47

strictly incremental

Arc-Eager Parsing: Evaluation

- small Swedish treebank (5685 sentences)

- evaluating incrementality: number of connected components
on stack during parse ( 1 means strictly incremental)

48

strictly incremental

“mildly” incremental

Intermediate Summary

- Dependency parsing works well in practice

- Incremental dependency parsing possible in many
cases

- Improving the parsing technique is essential

- Arc-Eager performs better than Bottom-up dep. parsing

- Well-formed parsing results show high incrementality

49

Intermediate Summary

- Dependency parsing works well in practice

- Incremental dependency parsing possible in many
cases

- Improving the parsing technique is essential

- Arc-Eager performs better than Bottom-up dep. parsing

- Well-formed parsing results show high incrementality

50

- … but, what about those structures (6) and (7) we
couldn’t parse incrementally?

Robust Incrementality

51

Robust Incrementality

Drawbacks of storing components on a stack

- psycholinguistic plausibility: why not integrate directly?

52

Robust Incrementality

Drawbacks of storing components on a stack

- psycholinguistic plausibility: why not integrate directly?

- practicality: delay of output as stored components are not
part of it

53

Robust Incrementality

- Argument Dependency Model

- dependencies between a verb’s arguments

- proto roles (proto-agent, proto-patient)

- e.g.: noun(animate & nominative)

 noun(proto-agent)

 dependency rel. SUBJ governs the noun (phrase)
 unless contradictory constraints override this 54

Robust Incrementality

NONSPEC node

- connect structures to NONSPEC node while verb has
not been found

- NONSPEC can change into any other node and even
divide into several nodes

- May even be in the resulting graph

Robust Incrementality: Evaluation

56

- corpus with

- uniform sentence pattern

- verb-final sublauses

 97.3% accurate dependency graphs, but…

Summary

- Incremental Dependency Parsing is possible
and efficient

- Verb-end structures pose problems to strict
incrementality

- Pseudo-strict incrementality with abstract
NONSPEC node suggested

- Integrates dep. relations on-the-fly

- still seems a lot like a renamed stack to me
(which can be output)  too vague 57

58

Thank you!

References

• Joakim Nivre (2004). Incrementality
in Deterministic Dependency Parsing

• Wolfgang Menzel (2009). Towards
radically incremental parsing of
natural language

59

